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It is generally assumed that the DNA damage response
pathways operating in eukaryotic cells are not activated
by natural chromosome ends. Eukaryotic chromosomes
terminate in telomeres, nucleoprotein complexes thought
to mask chromosome ends from the machinery that de-
tects and repairs damaged DNA. Indeed, in yeast and hu-
man cells, deteriorated telomeres signal to factors that
have also been implicated in the cellular response to
DNA damage (Sandell and Zakian 1993; Chin et al. 1999;
Karlseder et al. 1999). The recent finding that the Mrel1
complex, a mediator of the cellular DNA damage re-
sponse, is present at intact human telomeres (Zhu et al.
2000) contradicts the simple view that telomeres mask
the chromosome end from recognition as a DNA break.
Here, we discuss how the Mrel1 complex could collabo-
rate with telomeric proteins to protect chromosome ends
and regulate the maintenance of telomeric DNA.

THE PROTEIN COMPONENTS OF HUMAN
TELOMERES

Human telomeres are maintained by telomerase, which
adds TTAGGG repeats onto the 3" end of the chromo-
some, thus balancing the loss of terminal sequences that
accompanies replication of linear double-stranded DNA
(for review, see Greider 1996). As a consequence of their
telomerase-mediated maintenance, the termini of all hu-
man chromosomes carry an array of duplex TTAGGG re-
peats varying in length from 2 to 30 kb. The end of this
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array features 75-200 nucleotides of single-stranded
TTAGGG repeats forming a 3" overhang (Makarov et al.
1997; McElligott and Wellinger 1997).

A number of telomere-specific proteins have been
identified (Fig. 1) (for review, see Collins 2000). TRF1
and its paralog TRF2 are TTAGGG repeat-binding fac-
tors that carry a Myb-type helix turn helix (HTH) DNA-
binding motif in the carboxyl terminus and bind double-
stranded telomeric DNA as homodimers or higher-order
oligomers (Chong et al. 1995; Bianchi et al. 1997; Bilaud
etal. 1997; Broccoli et al. 1997; M. van Breugel et al., un-
publ.). Dimerization is achieved by a large TRF-specific
domain (the TRF homology domain, TRFH) in the mid-
dle of these proteins. The amino terminus of the TRFs is
highly charged and contains predominantly basic amino
acids in TRF2, whereas the amino terminus of TRF1 is
acidic. Many copies of these ubiquitous and abundant
telomere-binding proteins reside along the duplex
TTAGGG repeat array in all phases of the cell cycle.
TRF1 binds to TIN2 (Kim et al. 1999) and is regulated by
tankyrase, a telomeric poly(ADP-ribose) polymerase
(Smith et al. 1998; Smith and de Lange 2000). TRF2 is
known to interact with at least one other telomeric pro-
tein, hRap1 (Li et al. 2000), a highly diverged ortholog of
the yeast telomeric protein Raplp. Proteins that bind the
telomeric 3" overhang have not been identified, although
hnRNPA/UP1, which binds to single-stranded TTAGGG
DNA (Ishikawa et al. 1993), has been implicated in
telomere function (LaBranche et al. 1998).
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Figure 1. Components of the mammalian telomeric complex and the domain structure of TRF2. See text for details.
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Several components of the telomeric complex shown
in Figure 1 contribute to the regulation of telomere
length. Telomere maintenance by telomerase is con-
trolled by a homeostasis mechanism that results in a sta-
ble length setting. TRF1 and TRF2, as well as TIN2 and
possibly hRapl act as negative regulators of telomere
length (van Steensel and de Lange 1997; Kim et al. 1999;
Li et al. 2000; Smogorzewska et al. 2000; B. Li and T. de
Lange, unpubl.), whereas tankyrase appears to be a posi-
tive regulator (Smith and Lange 2000).

TREF2 is essential for the protection of chromosome
ends. Inhibition of TRF2 with a dominant-negative allele
that prevents the accumulation of TRF2 at telomeres re-
sults in immediate deprotection of chromosome ends. In
this context, telomere malfunction is evidenced by the
loss of the 3" overhang and the formation of end-to-end
chromosome fusions (van Steensel et al. 1998). Further-
more, inhibition of TRF2 leads to the activation of the
ATM/p53 DNA damage response pathway, resulting in
cell cycle arrest and apoptosis (Karlseder et al. 1999).
Overexpression of TRF2 can induce gradual shortening
of telomeres even in the presence of telomerase, suggest-
ing that TRF2 also functions in the regulation of telomere
maintenance (Smogorzewska et al. 2000).

T-LOOPS

Inspection of the structure of telomeric DNA in mam-
mals by electron microscopy has revealed the presence of
a specific higher-order DNA structure, referred to as the t-
loop (Fig. 2) (Griffith et al. 1999). Mammalian t-loops are
large lasso structures composed of many kilobases of du-
plex TTAGGG repeats. t-loops also occur in try-
panosomes (Munoz et al. 2001), and loops were demon-
strated at chromosome ends in Oxytricha (Murti and
Prescott 1999). The t-loop configuration appears to be cre-
ated by the invasion of the single-stranded TTAGGG re-
peat tail into the duplex part of the telomere. The base of
the loop contains a short region of single-stranded DNA,
consistent with the displacement of the G-rich telomeric
repeat strand by invasion of the 3" overhang. It is predicted
that the formation of t-loops depends on the repetitive na-
ture of the telomeric DNA and on the remodeling of this
DNA by architectural proteins. TRF2 binds to tail-loop
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Figure 2. Structure of t-loops. See text for details.

junctions in vitro and increases the frequency of t-loop
formation with telomeric DNA substrates. It is unclear
whether TRF2 actually stimulates t-loop formation in this
setting. Perhaps TRF2 stabilizes t-loops by blocking their
resolution, for instance, by preventing branch migration.
Regardless, it is tempting to speculate that inhibition of
TRF2 in vivo leads to an opening of t-loops, effectively
unfolding the telomere into a structure that resembles
damaged DNA (Griffith et al. 1999).

t-loops have also been proposed to contribute to the
regulation of telomere maintenance by telomerase (Grif-
fith et al. 1999). Mounting evidence suggests that telo-
mere length homeostasis is in part achieved via regulation
of the access of telomerase to the telomere terminus (for
review, see Nugent and Lundblad 1998). For instance, al-
tered levels of several telomere-binding proteins affect
telomere length maintenance, and this resetting of telo-
mere length occurs without a change in either the expres-
sion level or the activity of telomerase (van Steensel and
de Lange 1997; Kim et al. 1999; Li et al. 2000; Smith and
Lange 2000; Smogorzewska et al. 2000). The simplest in-
terpretation of these results is that the access of telomer-
ase to the telomere terminus is controlled by the telomeric
complex. In vitro, telomerase requires a protruding 3’
end, predicting that the remodeling of telomeres into t-
loops might block telomerase from acting on the telomere
terminus. According to this view, telomere maintenance
would require the opening of t-loops, and factors that
stimulate t-loop formation (possibly TRF2) should act as
negative regulators of telomere length.

Telomeres need to carry out two apparently irreconcil-
able tasks. Telomere maintenance requires that telom-
erase gain access to the telomere terminus, whereas pro-
tection of chromosome ends presumably involves the
sequestration of the same DNA end from factors that ex-
ecute genome surveillance and repair. If t-loops are the
main mechanism by which chromosome ends are pro-
tected, t-loop dynamics would have to be carefully or-
chestrated to allow telomerase access to the telomere ter-
minus without a general unmasking of chromosome ends.
Here, we propose that the Mrel1 complex contributes to
the regulation of t-loop dynamics.

THE COMPONENTS OF THE
Mrell COMPLEX

The Mrell complex is a trimeric protein that has a key
role in the maintenance of genome integrity and the pro-
cessing of double-strand breaks (DSBs) (Fig. 3) (for re-
view, see Haber 1998; Petrini 1999). Two of its compo-
nents, Mrell and Rad50, are conserved in mammals and
yeast (Petrini et al. 1995; Dolganov et al. 1996), and there
is good evidence for their origin in the bacterial SbcCD
nuclease complex and the related T4 gp46/47 nuclease
(Sharples and Leach 1995; for review, see Kreuzer 2000).
Mrell has three phophoesterase motifs at its amino ter-
minus as well as a fourth domain shared by the nucleases
SbeD and T4 gp47 (Sharples and Leach 1995). Two
DNA-binding domains distal to the amino-terminal nu-
clease domain have been identified (Furuse et al. 1998;
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Figure 3. Core components of the mammalian Mrel1 complex. See text for details.

Usui et al. 1998). In vitro, Mrell is a 3" to 5" exonucle-
ase, digesting both double- and single-stranded DNAs,
and it has single-stranded endonuclease activity that can
also cleave hairpins (Ogawa et al. 1995; Paull and Gellert
1998, 1999, 2000; Trujillo et al. 1998; Moreau et al.
1999).

Rad50 is an ATP-dependent DNA-binding protein that
can unwind DNA, and its structure has some similarity to
the SMC family of chromosome condensation factors
(Sharples and Leach 1995; Connelly et al. 1999; Paull
and Gellert 1999; Hopfner et al. 2000). The crystal struc-
ture of part of the Pyrococcus Rad50 ortholog suggests
that this dimeric protein could hold onto two DNA
molecules (or two DNA ends) in a reaction that is con-
trolled by ATP hydrolysis (Hopfner et al. 2000).

The third player in this complex is remarkably diver-
gent. The amino acid sequence of Xrs2, the only known
partner of Rad50/Mrel 1 in yeast (Johzuka and Ogawa
1995), is very different from its mammalian counterpart,
Nbsl (Carney et al. 1998), although there is a short
stretch of modest sequence similarity at the amino termini
of these proteins. Structural studies will be required to re-
veal whether Nbs1 and Xrs2 are related. Nbs1 has a Fork-
head-associated (FHA) phosphopeptide-binding domain
in its amino terminus, located next to a BRCA1 carboxy-
terminal (BRCT) protein interaction domain. Neither
Xrs2 nor Nbsl1 has a recognized activity in vitro, although
the presence of Nbsl potentiates ATP-dependent un-
winding and nuclease activities of baculovirus-produced
Mrell and Rad50 (Paull and Gellert 1999).

The native Mrel 1 complex extracted from human cells
is large (>1500 kD) in part due to multimerization of the
core components. The complex also contains an uniden-
tified protein of approximately 400 kD (Carney et al.
1998), and interactions have been demonstrated with
BRCAL1 (Zhong et al. 1999), TRF2 (Zhu et al. 2000) (see

below), TRF1 (G. Wu et al. 2000), E2F1 (see Petrini, this
volume), and the ATM kinase (Gatei et al. 2000; Lim et
al. 2000; X. Wu et al. 2000b; Zhao et al. 2000).

RECOMBINATIONAL DNA REPAIR

Genetic studies in yeast have implicated the Mrell
complex in diverse aspects of DSB repair and in meiotic
recombination (Haber 1998; Petrini et al. 2000). The re-
pair of DSBs in yeast occurs predominantly by homolo-
gous recombination (HR). Nonhomologous end-joining
(NHEJ) activity is also present in Saccharomyces cere-
visiae, but this mechanism does not contribute substan-
tially to cell survival after the induction of DSBs (Mages
et al. 1996; Moore and Haber 1996; Tsukamoto et al.
1996; Bressan et al. 1999). DSBs are resected in the 5” to
3’ direction to create a 3" single-stranded DNA tail prior
to HR (Paques and Haber 1999). Although the Mrell
complex exonuclease activity has the opposite polarity, it
influences the kinetics of 5°-3" resection at HO endonu-
clease-induced DSBs (Ivanov et al. 1994; Lee et al.
1998).

The complex also effects subsequent steps in HR. In
cells treated with ionizing radiation or methylmethane
sulfonate (MMS), which is a radiomimetic in S. cere-
visiae, HR-based repair is profoundly impaired (Bressan
etal. 1999), and Mrel1 complex mutants are unable to ef-
fectively utilize sister chromatids as templates for recom-
binational DNA repair in both haploid and diploid cells.
Although this defect is most pronounced with regard to
the use of sister chromatids, homologous chromosomes
are also less effective as templates for HR in Mre1 1-defi-
cient strains (Ivanov et al. 1992; Bressan et al. 1999). Fi-
nally, studies on chicken cells lacking normal Mrell
function are consistent with a role for this complex in HR
(Yamaguchi-Iwai et al. 1999) (see below).
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It has been proposed that the Mrel1 complex promotes
end-joining through exonucleolytic processing of DNA
ends (Paull and Gellert 1999, 2000; but see Moreau et al.
1999). In addition, the Mrell complex could have a
structural role (holding together DNA ends or recombi-
nation partners) perhaps mediated by the SMC-like fea-
tures of Rad50. In agreement, the contribution of RAD50
to NHEJ is greater in S phase and G, cells (Moore and
Haber 1996), presumably because in these cells, Rad50
can use the sister chromatid to hold the broken ends to-
gether.

TELOMERE MAINTENANCE IN YEAST

Studies in yeast have revealed an additional role for the
Mrell complex at natural chromosome ends, where it is
required for the maintenance of telomeric DNA. Mutants
deficient for Rad50, Mrell, or Xrs2 show progressive
telomere shortening and, in some strains, cellular senes-
cence (Kironmai and Muniyappa 1997; Boulton and
Jackson 1998; Nugent et al. 1998). Loss of Rad50 does
not exacerbate the rate of telomere loss in telomerase-de-
ficient strains, indicating that the Mrell complex func-
tions by facilitating the elongation of telomeres by telom-
erase (Nugent et al. 1998). Perhaps the Mrell complex
mediates exonucleolytic processing of the telomere ter-
minus. Formation of a 3" overhang is a presumed re-
quirement to allow telomerase to act on the DNA end
formed by leading-strand synthesis (see Fig. 4A). As a
blunt end, the product of leading-strand synthesis is prob-
ably not a substrate for telomerase, which has been shown
to require a 3" overhang in vitro. However, rad50A mu-
tants have no obvious defect in the formation of 3" telo-
meric overhangs (Dionne and Wellinger 1998), and the in
vitro activity of the Mrel 1 complex predicts formation of
5" overhangs, a wrinkle that also has been noted in the
context of DSB resection.

Without telomerase, yeast cells eventually succumb to
the consequences of telomere attrition (Lundblad and
Szostak 1989; Lundblad and Blackburn 1993; Singer and
Gottschling 1994). However, frequent survivors arise
from such cultures, and these cells use a RADS52-depen-
dent recombination pathway either to maintain their
telomeric DNA or to amplify subtelomeric elements
(Lundblad and Blackburn 1993; for review, see Kass-
Eisler and Greider 2000). Such survivors do not arise in
rad50/rad51 double mutants, and RAD50 and RADS51 ap-
pear to direct two independent pathways that allow con-
tinued growth of telomerase-deficient cells (Le et al.
1999).

MUTATIONS IN THE VERTEBRATE
Mrell COMPLEX

Although S. cerevisiae can survive without these pro-
teins, at least two of the components of the vertebrate
Mrell complex are essential at the cellular level (Xiao
and Weaver 1997; Luo et al. 1999; Yamaguchi-Iwai et al.
1999). Chicken DT40 cells have a reduced ability to
withstand DNA damage when they are depleted of Mrell

(Yamaguchi-Iwai et al. 1999). This phenotype is worse in
cells that also lack Ku70, indicating that the Mrell com-
plex is important for damage repair independent of its
role in Ku70-mediated NHEJ. It is likely that this result
reflects a role for the Mrell complex in HR. Indeed,
DTA40 cells, which normally are very efficient in homolo-
gous recombination, display a profound defect in gene-
targeting when they lack Mrel 1. Furthermore, Mrel17
cells show a dramatic increase in chromosomal aberra-
tions, specifically those abnormalities that result from
DNA breaks in S phase or G,. DT40 cells repair S phase
and G, breaks primarily by HR; this repair is diminished
in Rad54™", whereas loss of the NHEJ pathway (Ku™")
has little effect. Therefore, the specific effect of Mrel1 on
the processing of breaks in S phase and G, again impli-
cates this complex in HR.

Although the lethality of null Mrell complex mutants
has hampered analyses of its functions in recombina-
tional DNA repair somewhat, the cytology of this com-
plex has provided insight. In mammalian cells, the Mrel1
complex relocates to sites of DNA damage very soon af-
ter ionizing irradiation (Nelms et al. 1998). This process
results in the formation of a typical punctate pattern of
numerous nuclear foci that contain Rad50, Mrell, Nbsl
(Maser et al. 1997; Carney et al. 1998; X. Wu et al.
2000a), as well as BRCA1 (Zhong et al. 1999; X. Wu et
al. 2000a), Rad52 (Liu et al. 1999), and a phosphorylated
form of H2A (H2AX) (Paull et al. 2000). The rapid
translocation of the Mrell complex to sites of damage
suggests that it functions in early steps of DSB recogni-
tion and processing.

Further information about the function of the mam-
malian Mrell complex comes from two rare human dis-
orders, the ataxia-telangiectasia-like disorder (ATLD)
and Nijmegen breakage syndrome (NBS) which are due
to hypomorphic mutations in Mrell and Nbsl, respec-
tively (Carney et al. 1998; Stewart et al. 1999; for review,
see Petrini 1999). Both syndromes are similar to ataxia-
telangiectasia at the cellular level, although there are sig-
nificant differences in clinical presentation. Like ataxia-
telangiectasia, ATLD and NBS cells display spontaneous
chromosome aberrations, often involving translocations
of chromosome 14, and their frequency of clastogen-in-
duced abnormal karyotypes is greatly increased. The ac-
tivation of ATM and p53 in response to DSBs is not af-
fected in Nbsl or Mrell hypomorphic mutants,
indicating that signaling from DSB to the p53 pathway
does not require the Mrel 1 complex, although JNK acti-
vation is impaired in those contexts (Stewart et al. 1999).
Indeed, although cells that are mutant for Mrel1 or Nbsl
have a defect in the S-phase checkpoint, their p53-depen-
dent DSB checkpoints are intact (Yamazaki et al. 1998).

ASSOCIATION OF THE Mrell COMPLEX WITH
TRF2 AND TELOMERES

A stable interaction of the Mrell complex with TRF2
was detected by nanoelectrospray sequencing of polypep-
tides that coimmunoprecipitate with human TRF2 (Zhu et
al. 2000). Inspection of the TRF2 complex on SDS-
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PAGE revealed polypeptides migrating at 150, 70, and 60
kD. The 70-kD doublet was found to contain TRF2, and
the 60-kD band contained human Rap1, a protein that was
independently isolated in a two-hybrid screen with TRF2
(Li et al. 2000). Sequencing of peptides from the 150-kD
band unambiguously identified human Rad50.

Each of the three components of the Mrell complex,
Rad50, Mrell, and Nbsl, could be demonstrated in
TRF2 immunoprecipitates derived from several tumor
cell lines and primary human fibroblasts. However, the
immunoprecipitation experiments indicate that only a mi-
nor fraction (1-5%) of the Mrell complex is bound to
TRF2, and vice versa, most of the TRF2 extracted in nu-
clear extracts appears to be free of the Mrell complex.

Mrel 1 and Rad50 were detected at telomeres by indi-
rect immunofluorescence of cells extracted with Triton
X-100. Extraction of soluble nuclear factors prior to fix-
ation is necessary because Mrell and Rad50 are abun-
dant nuclear proteins resulting in a bright overall nuclear
staining pattern that can mask telomeric association. Us-
ing this technique, we found a minor fraction of the
Mrell and Rad50 signals at discrete sites that were iden-
tified as telomeres based on costaining for TRF1, a spe-
cific marker for telomeres. Telomeric Mrel 1 and Rad50
was observed in all interphase cells, and most cells had
numerous telomeric sites containing these factors. How-
ever, it was not possible to determine whether all telo-
meres contained these proteins. The association of Mrel 1
with telomeric DNA was independently verified by chro-
matin immunoprecipitation analysis (D. Loayza and T. de
Lange, unpubl.).

TELOMERIC PROTEINS DO NOT RELOCATE
IN RESPONSE TO DNA DAMAGE

Upon treatment of cells with ionizing radiation, the
Mrell complex migrates rapidly to sites of DNA damage
(Nelms et al. 1998). This initial relocation is eventually
followed by accumulation of the complex in large aggre-
gates (referred to as ionizing-radiation-induced foci,
IRIFs) that are readily detectable by immunofluorescence
at about 8 hours postirradiation. In contrast, the localiza-
tion of TRF2 and other telomeric proteins is not de-
tectably affected by DNA damage. Specifically, TRF2,
TRF1, and hRap1 remained at telomeres after irradiation,
and none of these factors were detectable in association
with IRIFs. Furthermore, ChIP analysis revealed that
TRF1 and TRF2 remained associated with telomeric
DNA in cells that were y-irradiated (E. Aanhane et al., un-
publ.). Finally, induction of DNA damage did not affect
the association of the Mrel1 complex with TRF2 as evi-
denced from the persistence of Rad50, Mrel 1, and Nbsl
in the TRF2 immunoprecipitates. Similarly, no changes
were detected in the subnuclear distribution of telomeric
proteins in cells that were treated with UV (X.-D. Zhu
and T. de Lange, unpubl.). Thus, several components of
the human telomeric complex are stably associated with
telomeres in cells with severely damaged DNA. This
finding contrasts the situation in the yeast S. cerevisiae
where two components of the telomeric complex, the Ku

heterodimer and Sir3p, are released from telomeres after
induction of double-stranded DNA breaks (Martin et al.
1999; Mills et al. 1999), presumably to migrate to sites of
damage.

Nbs1 IS RECRUITED TO TELOMERES
IN S PHASE

Although Mrell and Rad50 could be detected at
telomeres in the majority of interphase nuclei, most cells
had no detectable Nbsl at telomeres, instead showing
Nbs1 signals in the nucleoli as well as throughout the nu-
cleus. However, in approximately 10% of the nuclei,
Nbsl was found at telomeres based on colocalization
with TRF1. Inspection of HeLa cells progressing through
the cell cycle showed that the localization of Nbsl was
dependent on the cell cycle stage. Specifically, Nbsl
could be observed at telomeres in S-phase nuclei but not
before or after DNA replication. Furthermore, the TRF2
complex contained Nbs1 primarily during DNA replica-
tion, whereas no (or less) Nbs1 appeared to be present in
the TRF2 complex in G,/M and G;. In contrast, the inter-
action of Mrell and Rad50 with TRF2 was observed
throughout the cell cycle.

The association of Nbs1 with telomeres was confirmed
by an analysis of meiotic chromosomes. Specifically,
Nbsl1 is at telomeres in spermatocytes where it colocal-
izes with TRF1 and Mrel1 (Lombard and Guarente 2000;
J.H.J. Petrini, and H. Scherthan, pers. comm.). Finally,
Nbs1 interacts with TRF1 as detectable by two-hybrid
analysis and such an association may further solidify the
binding of Nbsl to telomeres (G. Wu et al. 2000).

POSSIBLE ROLES OF THE Mrell COMPLEX
AT TELOMERES

The function of the Mrell complex at human telo-
meres has not been established. Preliminary analysis of a
limited number of Mrel1 and Nbs1 mutant cells failed to
reveal an obvious change in telomere structure (X.-D.
Zhu and T. de Lange, unpubl.), and no indication for
telomere dysfunction (e.g., end-to-end fusions) was noted
in ATLD or NBS cells. Perhaps the loss of the Mrell
complex has a more subtle telomere phenotype or the
function of this complex at telomeres is redundant. It is
also important to note that the human cell lines with mu-
tations in this complex are derived from ATLD and NBS
patients and as such represent hypomorphic alleles, rather
than null mutations. Indeed, the lethality of targeted dele-
tions of Mrel1 and Rad50 in mouse cells is fully compat-
ible with an important telomere function (Xiao and
Weaver 1997; Luo et al. 1999). Here, we discuss three
possible roles for the Mrel1 complex at telomeres.

One possibility is that the Mrell complex is required
for the generation of 3" overhangs at telomeres (Fig. 4A).
This idea was proposed to explain the requirement of the
Mrell complex in telomere maintenance in yeast (dis-
cussed above), and the same mechanism might hold for
human telomeres. Indeed, human telomeres contain a 3"
overhang (Makarov et al. 1997; McElligott and Wellinger
1997; Wright et al. 1997; Huffman et al. 2000), and this
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overhang is thought to be maintained at all telomeres
even in cells that lack telomerase. Thus, resection of the
5" end would be required to recreate the overhang at the
chromosome end formed by leading-strand synthesis
(Fig. 4A). Interestingly, the presence of this overhang is
severely diminished after inhibition of TRF2 (van
Steensel et al. 1998), the protein that tethers the Mrel 1
complex to telomeres (Zhu et al. 2000).

In addition to providing a substrate for telomerase, ex-
onucleolytic processing of telomere termini may be re-
quired to generate an overhang of sufficient length to al-
low t-loop formation. In this context, it is important to note
that the minimal length of the 3" overhang for t-loop for-
mation has not been established. Exonucleolytic attack
may also be relevant to the programmed shortening of hu-
man telomeres in normal somatic cells. It was understood
early on that the rate of telomere shortening in primary hu-
man cells far exceeds that predicted based on the end-
replication problem. Indeed, yeast cells and Drosophila
lacking telomerase lose no more than a few base pairs
from each chromosome end per cell division (for review,
see Biessmann and Mason 1997); this rate matches the
predicted shortening due to removal of the last RNA
primer for lagging-strand synthesis. Since human cells
show a rate of telo-mere shortening that often exceeds 100
bp/end/population doubling, resection of the 5" telomere

end may well be the main mechanism by which telomere
shortening is effected. If the Mrel1 complex controls this
process, it is predicted that the length of the 3" overhang
or the rate at which 3" overhangs are formed is diminished
in cells from NBS or ATLD patients. Furthermore, the rate
of telomere shortening may be altered in these syndromes.

An indirect link between telomere shortening rates and
the Mrell complex is provided by the ATM kinase. Re-
cent data have placed the ATM kinase upstream of the
Mrell complex in the S-phase DNA damage checkpoint
(Gatei et al. 2000; Lim et al. 2000; X. Wu et al. 2000b;
Zhao et al. 2000; see also J.H. Petrini [this volume] for a
discussion of the S-phase checkpoint). Primary cells from
ataxia-telangiectasia patients have an increased rate of
telomere shortening (Metcalfe et al. 1996; Xia et al. 1996;
Vaziri et al. 1997), raising the possibility that the ATM
kinase through its ability to phosphorylate Nbs1 could
modulate the exonucleolytic degradation of telomeres.

A second proposal is that the Mrell complex con-
tributes to the formation and maintenance of t-loops. t-
loop formation resembles initial steps in HR as well as
early events in recombination-dependent replication
(RDR) (Fig. 4B). In both processes, homologous se-
quences are brought together, and a 3" single-strand end
is invaded into duplex DNA. The Mrell complex has
been shown to facilitate HR in yeast (see above) and its
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role in HR may be equivalent to its telomeric function.
The bacterial counterpart of the Mrell complex, the
SbeCD nuclease, is required for the processing of stalled
DNA replication forks (for review, see Kowalczykowski
2000), and recombination-dependent replication of T4
phage requires the contribution of its Mrel1/Rad50 ho-
mologs, gp46/47 (for review, see Kreuzer 2000).

Finally, it is possible that the Mrell complex con-
tributes to the controlled resolution of t-loops. Presum-
ably, t-loops will need to be resolved for replication forks
to proceed to the end of the chromosome, and the open-
ing of t-loops is likely to be required for telomerase-me-
diated telomere elongation. In vitro, the Mrell complex
has two activities that could facilitate t-loop resolution.
First, the complex can unwind DNA to some extent and
second, it can cleave a 3" overhang at the junction with
double-stranded DNA (Paull and Gellert 1999). Interest-
ingly, both activities are enhanced by the addition of
Nbs1. Thus, the acquisition of Nbsl in the telomeric
Mrell complex in S phase could reflect a switch in the
activity of the Mrell complex from a protein that pro-
motes t-loops (as in Fig. 4B) to a factor that opens this
structure (as in Fig. 4C). Nbsl and S-phase-regulated t-
loop dynamics may ensure appropriate replication of the
chromosome end while preventing inappropriate activa-
tion of the DNA damage response.
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